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Abstract
Although capsaicin exhibits antitumor activity, carcinogenic potential has also been reported. To clarify the mechanism for
expression of potential carcinogenicity of capsaicin, we examined DNA damage induced by capsaicin in the presence
of metal ion and various kinds of cytochrome P450 (CYP) using 32P-50-end-labeled DNA fragments. Capsaicin induced
Cu(II)-mediated DNA damage efficiently in the presence of CYP1A2 and partially in the presence of 2D6. CYP1A2-treated
capsaicin caused double-base lesions at 50-TG-30, 50-GC-30 and CG of the 50-ACG-30 sequence complementary to codon 273,
a hotspot of p53 gene. DNA damage was inhibited by catalase and bathocuproine, a Cu(I) chelator, suggesting that reactive
species derived from the reaction of H2O2 with Cu(I) participate in DNA damage. Formation of 8-oxo-7,8-dihydro-20-
deoxyguanosine was significantly increased by CYP1A2-treated capsaicin in the presence of Cu(II). Therefore, we conclude
that Cu(II)-mediated oxidative DNA damage by CYP-treated capsaicin seems to be relevant for the expression of its
carcinogenicity.
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Abbreviations: 8-oxodG, 8-oxo-7,8-dihydro-20-deoxyguanosine (and also known as 8-hydroxy-20-deoxyguanosine); HPLC-
ECD, an electrochemical detector coupled to a high performance liquid chromatography; Fpg, Escherichia coli
formamidopyrimidine-DNA glycosylase; DTPA, diethylenetriamine-N,N,N0,N00,N00-pentaacetic acid; Oz2

2 , superoxide anion
radical; H2O2, hydrogen peroxide; DMSO, dimethyl sulfoxide; CYP, cytochrome P450; NADPþ, b-nicotinamide adenine
dinucleotide phosphate (oxidized form); G-6-PDH, glucose 6-phosphate dehydrogenase; G-6-P, glucose 6-phosphate; CIP, calf
intestine phosphatase; SOD, superoxide dismutase

Introduction

Capsaicin (8-methyl-N-vanillyl-6-nonenamide), a

principal pungent component of Capsicum fruits, is

frequently consumed as spices and drugs. Capsaicin is

known to have antioxidant properties [1,2]. Several

studies have indicated that capsaicin possesses potent

antimutagenic and anticarcinogenic activities [3,4]. In

addition, capsaicin is currently considered a novel

agent for use in the management of patients with

arthritic pain and inflammation [5,6]. Therefore,

capsaicin has been considered as one of the potential

chemopreventive agents.

On the other hand, epidemiological studies have

reported association between red chili pepper con-

sumption and gastric cancer [7,8], gallbladder cancer

[9,10], liver and pancreas cancer [11]. Capsaicin is

the most abundant of the capsaicinoids, constituting

approximately 40–60% of the total capsaicinoid

content in hot pepper products [12]. It has been

observed that dietary administration of semisynthetic

ISSN 1071-5762 print/ISSN 1029-2470 online q 2006 Informa UK Ltd.

DOI: 10.1080/10715760600827483

†Present address: S. Kawanishi, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293,
Japan.

Correspondence: S. Kawanishi, Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie 514-8507, Japan. Tel./Fax: 81 59 231 5011. E-mail: kawanisi@doc.medic.mieu.ac.jp

Free Radical Research, September 2006; 40(9): 966–973

Fr
ee

 R
ad

ic
 R

es
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
N

ew
ca

st
le

 U
ni

ve
rs

ity
 o

n 
12

/0
2/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



powdered diet with capsaicin induces tumors of the

cecum in mice [13]. Relevantly, epidemiological

studies have demonstrated that some antioxidant

chemopreventive agents including beta-carotene

and alpha-tocopherol have carcinogenic potential

[14–18]. We have evaluated the safety of antioxidants

on the basis of reactivity with DNA [19]. Previously,

we demonstrated that several antioxidants, such as

melatonin [20], propyl gallate [21], catechins [22,23],

beta-carotene [24], alpha-tocopherol [25], etc. or

those metabolites caused oxidative DNA damage to

cellular and isolated DNA.

In this study, to clarify mechanism for expression of

potential carcinogenicity of capsaicin, we investigated

DNA damage induced by capsaicin in the presence of

metal ion and cytochrome P450 (CYP) using 32P-50-

end-labeled DNA fragments obtained from the human

p16 and p53 tumor suppressor genes and c-Ha-ras-1

protooncogene. We also analyzed the formation of

8-oxo-7,8-dihydro-20-deoxyguanosine (8-oxodG)

using an electrochemical detector coupled to a high

performance liquid chromatography (HPLC-ECD).

A characteristic oxidative DNA lesion, 8-oxodG, has

attracted much attention in relation to mutagenesis

and carcinogenesis [26].

Materials and methods

Materials

The restriction enzymes and glucose 6-phosphate

dehydrogenase (G-6-PDH) were obtained from

Boehringer Mannheim GmbH (Germany). T4 poly-

nucleotide kinase was from New England Biolabs

(Beverly, MA, USA). [g-32P]ATP (222 TBq/mmol)

was from New England Nuclear (Boston, MA, USA).

Diethylenetriamine-N,N,N0,N00,N00-pentaacetic acid

(DTPA) and bathocuproine disulfonic acid were

from Dojin Chemical Corporation (Kumamoto,

Japan). Acrylamide, piperidine, dimethyl sulfoxide

(DMSO), bisacrylamide, b-nicotinamide adenine

dinucleotide phosphate (oxidized form) (NADPþ)

and glucose 6-phosphate monosodium salt (G-6-P)

were from Wako (Osaka, Japan). CYP isozymes from

human microsomes (1A1, 1A2, 2C9 and 2D6) and

CYP reductase (10.0 mg/ml protein from human

microsomes) were from Gentest Corporation

(Woburn, MA, USA). CuCl2, ethanol, D-mannitol

and sodium formate were from Nacalai Tesque

(Kyoto, Japan). Calf thymus DNA, calf intestine

phosphatase (CIP), superoxide dismutase (SOD,

3000 units/mg from bovine erythrocytes), catalase

(45,000 units/mg from bovine liver) and capsaicin

were from Sigma Chemical Corporation (St Louis,

MO, USA). Nuclease P1 (400 units/mg) was from

Yamasa Shoyu Corporation (Chiba, Japan). Echerichia

coli formamidopyrimidine-DNA glycosylase (Fpg)

was from Trevigen Inc. (Gaithersburg, MD, USA).

Preparation of 32P-50-end-labeled DNA fragments

Two fragments containing exon 1 or 2 of the human

p16 tumor suppressor gene [27] were obtained as

described previously [28]. The 50-end-labeled 490-

base pair fragment (EcoR I* 5841–EcoR I* 6330)

containing exon 1 was further digested with Mro I to

obtain the singly labeled 328-base pair fragment (EcoR

I* 5841–Mro I 6168) and the 158-base pair fragment

(Mro I 6173–EcoR I* 6330). The 50-end-labeled 460-

base pair fragment (EcoR I* 9481–EcoR I* 9940)

containing exon 2 was also further digested with BssH

II to obtain the singly labeled 309-base pair fragment

(EcoR I* 9481–BssH II 9789) and the 147-base pair

fragment (BssH II 9794–EcoR I* 9940).

DNA fragments were also obtained from the

human p53 tumor suppressor gene. The 32P-50-end-

labeled 650-base pair (Hind III* 13,972–EcoR I*
14,621) and 460-base pair (Hind III* 13,038–EcoR I*
13,507) fragments were obtained as described

previously [29]. The 650-base pair fragment was

digested with Apa I to obtain the singly labeled 211-

base pair (Hind III* 13,972–Apa I 14,182) and the

443-base pair (Apa I 14,179–EcoR I* 14,621) DNA

fragments. The 460-base pair fragment was digested

with Sty I to obtain the singly labeled 118-base pair

(Hind III* 13,038–Sty I13,155) and the 348-base pair

(Sty I 13,160–EcoR I* 13,507) fragments.

DNA fragments were prepared from the plasmid

pbc NI, which carries a 6.6 kb BamH I chromosomal

DNA segment containing the c-Ha-ras-1 protoonco-

gene. The singly labeled 261-base pair fragment

(Ava I* 1645–Xba I 1905), 341-base pair fragment

(XbaI 1906–Ava I* 2246), 98-base pair fragment (Ava

I* 2247–Pst I 2344), and 337-base pair fragment (Pst I

2345–Ava I* 2681) were obtained as previously

described [30,31]. For reference, nucleotide number-

ing starts with the BamH I site [32]. An asterisk

indicates 32P-labeling.

Detection of DNA damage induced by capsaicin treated

with CYP isozyme

Standard reaction mixtures containing capsaicin,

0.25 nM various CYP isozyme, 0.05 nM NADPH–

CYP reductase and NADPH-generating system

(200 mM NADPþ, 500 mM G-6-P, 0.07 units

G-6-PDH and 500mM MgCl2) in 200ml of 10 mM

sodium phosphate buffer (pH 7.8) containing 5mM

DTPA were incubated for 2 h at 378C. After

preincubation, 32P-50-end-labeled DNA fragments,

calf thymus DNA (20mM/base) and 20mM CuCl2
were added to the mixtures, followed by the

incubation for 1 h at 378C. Subsequently, the DNA

was treated with 1 M piperidine at 908C for 20 min or

10 units of Fpg protein in the reaction buffer (10 mM

HEPES-KOH (pH 7.4), 100 mM KCl, 10 mM EDTA

and 0.1 mg/ml BSA) for 2 h at 378C. Fpg protein

Oxidative DNA damage by capsaicin 967

Fr
ee

 R
ad

ic
 R

es
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
N

ew
ca

st
le

 U
ni

ve
rs

ity
 o

n 
12

/0
2/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



catalyzes the excision of 8-oxodG as well as Fapy

residues [33–35]. After ethanol precipitation, the

DNA fragments were electrophoresed and the auto-

radiogram was obtained by exposing X-ray film to the

gel as described previously [30,31]. The preferred

cleavage sites were determined by direct comparison

of the positions of the oligonucleotides with those

produced by the chemical reactions of the Maxam–

Gilbert procedure [36] using a DNA-sequencing

system (LKB 2010 Macrophor). A laser densitometer

(LKB 2222 UltroScan XL) was used for the

measurement of the relative amounts of oligonucleo-

tides from the treated DNA fragments.

Analysis of 8-oxodG formation in calf thymus DNA

induced by capsaicin treated with CYP1A2

The quantity of 8-oxodG was measured utilizing a

modification of the method described by Kasai et al.

[37]. Standard reaction mixtures containing capsaicin,

0.25 nM CYP1A2, 0.05 nM NADPH–CYP reductase

and NADPH generating system (200mM NADPþ,

500mM G-6-P, 0.07 units G-6-PDH and 500mM

MgCl2) in 400ml of 4 mM sodium phosphate buffer

(pH 7.8) containing 5mM DTPA were incubated for

2 h at 378C. Calf thymus DNA (100mM/base) and

20mM CuCl2 were added to the mixtures, followed by

the incubation for 1 h at 378C. After ethanol

precipitation, the DNA was digested into the nucleo-

sides with nuclease P1 and CIP, and analyzed by

HPLC–ECD, as described previously [38].

Results

DNA damage induced by capsaicin treated with various

CYP isozyme in the presence of metal ion

Capsaicin treated with CYP1A2 or 2D6 induced

DNA damage in the presence of Cu(II), whereas

Figure 1. Autoradiogram of 32P-labeled DNA fragments incubated

with capsaicin and Cu(II) in the presence of various CYP isozyme.

The reaction mixtures containing 500mM capsaicin, 0.25 nM

various CYP isozyme, 0.05 nM NADPH–CYP reductase and

NADPH-generating system (200mM NADPþ, 500mM G-6-P,

0.07 units G-6-PDH and 500mM MgCl2) in 200ml of 10 mM

sodiumphosphate buffer (pH 7.8) containing 5mM DTPA were

preincubated for 2 h at 378C. After preincubation, 32P-50-end-

labeled 443-bp DNA fragments, calf thymus DNA (20mM/base) and

20mM CuCl2 were added to the preincubated mixtures, followed by

the incubation for 1 h at 378C. Subsequently, DNA fragments were

treated with 1 M piperidine for 20 min at 908C, then electrophoresed

on an 8% polyacrylamide/8 M urea gel. The autoradiogram was

visualized by exposing an X-ray film to the gel.

Figure 2. Effects of scavengers and bathocuproine on DNA

damage induced by capsaicin treated with CYP1A2 in the presence

of Cu(II). The reaction mixtures containing 500mM capsaicin,

0.25 nM CYP1A2, 0.05 nM NADPH–CYP reductase and

NADPH-generating system (200mM NADPþ, 500mM G-6-P,

0.07 units G-6-PDH and 500mM MgCl2) in 200ml of 10 mM

sodiumphosphate buffer (pH 7.8) containing 5mM DTPA were

preincubated for 2 h at 378C. After preincubation, 32P-50-end-

labeled 211-bp DNA fragments, calf thymus DNA (20mM/base),

scavengers and 20mM CuCl2 were added to the preincubated

mixtures, followed by the incubation for 1 h at 378C. Following

piperidine treatment, the DNA fragments were analyzed as

described in Figure 1 legend.

S. Oikawa et al.968
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1A1-, 2C9- or 2E1-treated capsaicin did not cause

DNA damage under the conditions used (Figure 1).

CYP1A2-treated capsaicin induced Cu(II)-mediated

DNA damage more efficiently than 2D6-treated

capsaicin. Capsaicin treated with CYP1A2 induced

DNA damage in a dose-dependent manner (data not

shown). The DNA damage was enhanced by piper-

idine treatment, suggesting that CYP1A2-treated

capsaicin caused not only DNA strand breakage but

also base modification (data not shown). Without CYP

treatment, capsaicin did not induce DNA damage

(Figure 1). In addition, CYP1A2-treated capsaicin did

not induce DNA damage in the presence of other metal

ions, including Co(II), Ni(II), Mn(II), Mn(III), Fe(II),

Fe(III) or Fe(III)EDTA (data not shown).

Effects of scavengers and a metal chelator on DNA damage

induced by capsaicin treated with CYP1A2

Figure 2 shows the effects of scavengers and a metal

chelator on Cu(II)-mediated DNA damage induced by

capsaicin in the presence of CYP1A2. Catalase and

bathocuproine, a Cu(I) chelator, inhibited DNA

damage, suggesting the involvement of H2O2 and

Cu(I). SOD and hydroxyl radical (zOH) scavengers,

such as ethanol, mannitol, sodium formate and

DMSO, showed little or no inhibitory effect on the

DNA damages. Methional, which is capable of

scavenging both zOH and reactive oxygen species with

weaker reactivity [39,40], inhibited the DNA damage.

Site specificity of DNA damage induced by capsaicin

treated with CYP1A2

The patterns of DNA damage induced by CYP1A2-

treated capsaicin in the presence of Cu(II) were

determined by the Maxam–Gilbert procedure [36].

An autoradiogram was obtained and scanned with a

laser densitometer to measure relative intensity of

DNA damage in the human p16 tumor suppressor

gene (Figure 3A and B) and the human p53 tumor

suppressor gene (Figure 3C and D). CYP1A2-treated

capsaicin induced DNA damage frequently at T of

50-TG-30 and C of 50-GC-30 with a piperidine

treatment (Figure 3A). With Fpg treatment, the

DNA cleavage occurred mainly at G-residues,

Figure 3. Site specificity of DNA damage induced by capsaicin treated with CYP1A2 in the presence of Cu(II). The reaction mixtures

containing 10mM capsaicin, 0.25 nM CYP1A2, 0.05 nM NADPH–CYP reductase and NADPH-generating system (200mM NADPþ,

500mM G-6-P, 0.07 units G-6-PDH and 500mM MgCl2) in 200ml of 10 mM sodiumphosphate buffer (pH 7.8) containing 5mM DTPA

were preincubated for 2 h at 378C. After preincubation, 32P-50-end-labeled 309-bp DNA fragment obtained from the p16 tumor suppressor

gene (A and B) or 443-bp DNA fragment obtained from the p53 tumor suppressor gene (C and D), calf thymus DNA (20mM/base) and

20mM CuCl2 were added to the preincubated mixtures, followed by the incubation for 1 h at 378C. Following piperidine or Fpg treatment, the

DNA fragments were analyzed as described in Materials and Methods. The relative quantities of oligonucleotides were measured by scanning

the autoradiogram with a laser densitometer (LKB 2222 UltroScan XL, Pharmacia Biotech). Underlined bases represent double-base lesions

detected by the treatment with piperidine and Fpg protein.

Oxidative DNA damage by capsaicin 969
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especially of 50-TG-30, 50-GC-30 and GG sequences

(Figure 3B). Furthermore, CYP1A2-treated capsaicin

caused piperidine labile and Fpg-sensitive lesions at

CG in the 50-ACG-30 sequence, the complementary

sequence to codon 273 (a known hotspot) in exon 8

of the p53 gene [41,42] (Figure 3C and D). Thus, the

treated capsaicin can cause double base lesions at 50-

TG-30, 50-GC-30 and 50-ACG-30 sequences.

Formation of 8-oxodG in calf thymus DNA induced by

capsaicin treated with CYP1A2 in the presence of Cu(II)

By using an HPLC-ECD, we measured 8-oxodG

content in calf thymus DNA treated with capsaicin in

the presence of Cu(II) and CYP1A2. CYP1A2-

treated capsaicin induced an increase of 8-oxodG

formation in a dose-dependent manner (Figure 4). No

significant increase was observed in DNA treated with

heat-inactivated CYP1A2 or NADPH–CYP

reductase only in the presence of NADPH-generating

system. In addition, CYP1A2-treated capsaicin did

not induce 8-oxodG formation in the absence of

Cu(II) (data not shown).

Discussion

The present study demonstrated that capsaicin treated

with CYP1A2 efficiently induced DNA damage in the

presence of Cu(II). CYP1A2-treated capsaicin caused

piperidine-labile lesions at Tof 50-TG-30 sequence and

C of 50-GC-30 sequence. The treated capsaicin caused

DNA damage mainly at G of 50-TG-30, 50-GC-30 and

GG sequences in DNA fragments treated with Fpg

protein, which catalyzes the excision of piperidine-

resistant 8-oxodG [33–35]. These results suggest that

capsaicin treated with CYP1A2 efficiently induces

formation of 8-oxodG, which might lead to mutation

(G:C ! T:A transversion) through the misreplication

of DNA [33,43,44], adjacent to piperidine-labile

thymine lesions. Relevantly, it has been reported that

reactive oxygen species induce double-base lesions at

the 50-TG-30 sequence [45,46]. Interestingly,

CYP1A2-treated capsaicin induced double-base

lesions at CG of the 50-ACG-30 sequence complemen-

tary to codon 273, a well-known hotspot of the p53

gene [41,42]. Since cluster DNA damage is difficult to

repair [47], such double-base lesions appear to play an

important role in capsaicin-induced carcinogenesis.

Previously, we demonstrated that CYP-treated euge-

nol and melatonin, which have potential carcinogeni-

city, can cause double base lesions [20,48].

The result of site specificity of DNA damage

induced by CYP1A2-treated capsaicin supports the

involvement of reactive species other than zOH

because zOH causes DNA damage at any nucleotides

with little site specificity [49,50]. In order to clarify

what kinds of ROS cause the site-specific DNA

damage, we examined the effects of various scavengers

on the DNA damage. Typical zOH scavengers showed

little or no inhibitory effect on the DNA damage,

whereas methional inhibited it. Methional scavenges

not only zOH but also a variety of reactive species other

than zOH [39,40]. The inhibitory effects of bath-

ocuproine and catalase on Cu(II)-mediated DNA

damage indicate that Cu(I) and H2O2 have important

roles in the production of the active species

responsible for causing DNA damage. On the basis

of these data, we propose a possible mechanism by

which capsaicin induces Cu(II)-mediated DNA

damage (Figure 5). Capsaicin is metabolized to

demethyl capsaicin through CYP1A2-catalyzed

o-demethylation [12]. It is reported that CYP1A2

and 2D6 can catalyze some o-demethylation reactions

[51–53]. Demethyl capsaicin is then autoxidized into

the semiquinone radical, which is further oxidized to

the corresponding o-quinone form. Cu(II) is reduced

to Cu(I) during the autoxidation, and O2
2 is

concomitantly generated, followed by dismutation to

H2O2. H2O2 interacts with Cu(I) to form the Cu(I)-

hydroperoxo complex such as Cu(I)OOH, capable of

inducing DNA damage [54]. Copper has been found

in the nucleus in close association with chromosomes

and DNA bases, where it has physiological functions

in maintaining DNA structure [55]. Therefore,

copper ions and molecular oxygen may play significant

roles in the mechanism of capsaicin metabolites-

mediated DNA damage in vivo.

Figure 4. Formation of 8-oxodG induced by capsaicin treated with

CYP1A2 in the presence of Cu(II). Standard reaction mixtures

containing capsaicin, 0.25 nM CYP1A2, 0.05 nM NADPH–CYP

reductase and NADPH-generating system (200mM NADPþ,

500mM G-6-P, 0.07 units G-6-PDH and 500mM MgCl2) in

400ml of 4 mM sodium phosphate buffer (pH 7.8) containing 5mM

DTPA were incubated for 2 h at 378C. Calf thymus DNA

(100mM/base) and 20mM CuCl2 were added to the preincubated

mixtures, followed by the incubation for 1 h at 378C. After ethanol

precipitation, the DNA was subjected to enzyme digestion and

analyzed by HPLC-ECD as described under Materials and

Methods. Data represent the means ^ SE of four independent

experiments. In a certain experiment, CYP1A2 was inactivated by

908C for 10 min and quickly chilled before incubation.

S. Oikawa et al.970
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Capsaicin has been variously reported as carcino-

genic, co-carcinogenic and anti-carcinogenic [3]. Cap-

saicin plays paradoxical roles, acting as “double-edged

sword.” In this study, we demonstrated that CYP1A2-

treated capsaicin generated H2O2 to induce oxidative

DNA damage including 8-oxodG, which plays critical

roles in carcinogenesis [54]. In addition, it is reported

that CYP2D6 catalyzes not only o-demethylation

reactions but also the N-dehydrogenation and ring

oxygenation of capsaicin [12]. Thus, we considered that

CYP2D6-treated capsaicin induced Cu(II)-mediated

DNA damage less efficiently than 1A2-treated capsai-

cin. Demethyl capsaicin, a catechol metabolite of

capsaicin, plays an important role in carcinogenic

process caused by capsaicin. Relevantly, catechol has

also been shown to have strong promotion activity

[56,57] and induce glandular stomach tumors to rodent

[58–60]. Previously, we demonstrated that oxidative

DNA damage by catechol through the generation of

H2O2 plays an important role in the carcinogenic

process of catechol and benzene [61,62]. In addition,

catechol-type compounds, such as carcinogenic cate-

chol estrogens and flavonoids, also induced oxidative

DNA damage through H2O2 generation [63–65]. On

the other hand, it is reported that capsaicin induces

mitochondrial dysfunction in vanilloid receptor subtype

1 (VR-1)-expressing cells, leading to apoptotic cell death

[66,67]. Therefore, it is considered that various

mechanisms including oxidative DNA damage induced

by ROS are involved in the expression of carcinogenicity

of capsaicin. Finally, further studies on safety should be

required when capsaicin is used for chemo-prevention.
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